

Current Transducer LT 2005-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 2000 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ ± 24 V Measuring resistance		$\begin{array}{ll} 2000 \\ 0 \pm 3000 \\ \mathbf{R}_{Mmin} & \mathbf{R}_{Mmax} \end{array}$		A A
	with $\pm 15 \text{ V}$	@ ± 2000 A max @ ± 2200 A max @ ± 2000 A max	0 0 5	7.5 4 27.5	Ω Ω
	WILLI I ZT V	@ ± 2000 A _{max} @ ± 3000 A _{max}	5	10	Ω
I _{SN} K _N	Secondary nominal r.m.s. current Conversion ratio		400 1 : 500	00	mΑ
N ^c	Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isol	ation test, 50 Hz, 1 mn	± 15 20 (@ ± 6	24 24V)+ I _S	MA kV

Accuracy - Dynamic performance data

X _G e _L	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.3 < 0.1		% %
I _о	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	0°C + 70°C	Typ ± 0.2	Max ± 0.8 ± 0.3	mA mA
t _, di/dt f	Response time ¹⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	100	μs A/μs kHz

General data

Ambient operating temperature	0 + 70	°C
Ambient storage temperature	- 25 + 85	°C
Secondary coil resistance @ T _A = 70°C	25	Ω
Mass	1.5	kg
Standards ²⁾	EN 50178	
	Ambient storage temperature Secondary coil resistance @ $T_A = 70$ °C Mass	Ambient storage temperature $-25+85$ Secondary coil resistance @ $T_A = 70$ °C 25 Mass 1.5

Features

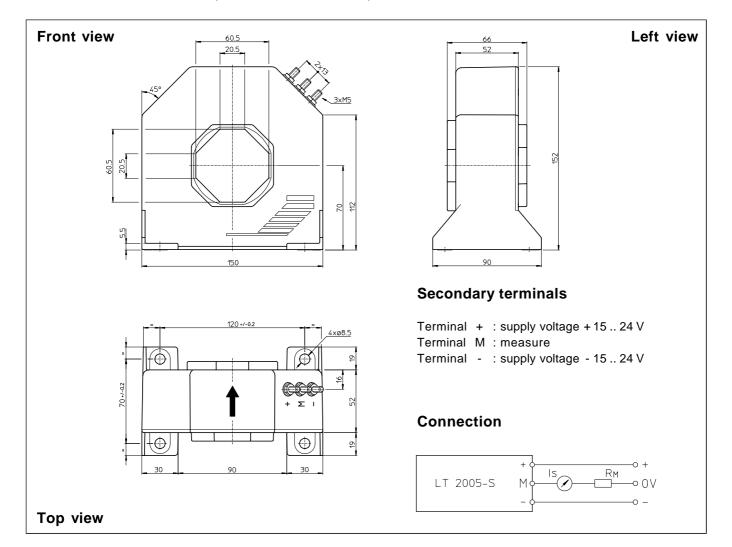
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes : 1) With a di/dt of 100 A/µs

²⁾ A list of corresponding tests is available

980806/4

Dimensions LT 2005-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary Fastening torque
- ± 0.5 mm
- 4 holes Ø 8.5 mm 60.5 x 60.5 mm
- M5 threaded studs 2.2 Nm or 1.62 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.