

Current Transducers HAS 50..600-P

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 $I_{PN} = 50..600 A$

 $V_{OUT} = \pm 4 V$

Electrical data						
Primary nominarisms. current $I_{PN}(A)$	al Primary current measuring range I _P (A)	Туре				
50 100 200 300 400 500 600	±150 ±300 ±600 ±900 ±900 ±900 ±900	HAS 50-P HAS 100-P HAS 200-P HAS 300-P HAS 400-P HAS 500-P HAS 600-P				
V _C I _C I _{OC} V _d V _b R _{IS} V _{OUT} R _{OUT} R _L	Supply voltage (± 5 %) Current consumption Overload capacity R.m.s. voltage for AC isolati R.m.s. rated voltage, safe s Isolation resistance @ 500 Output voltage @ ± I _{PN} , R _L = Output internal resistance Load resistance	eparation VDC	±15 ±15 30,000 3 500 ¹⁾ > 1000 ±4V ±40 100 > 1	V mA At kV V MΩ mV Ω kΩ		

	Accuracy - Dynamic performance data		
X	Accuracy @ I_{pN} , $T_{\Delta} = 25$ °C (without offset)	< ±1	%
e	Linearity $^{2)}$ (0 $\pm I_{PN}$)	< ±1	% of I _{PN}
V OE	Electrical offset voltage, $T_A = 25^{\circ}C$	$< \pm 40$	m̈̈V
V _{OH}	Hysteresis offset voltage $@$ $I_{PN} \rightarrow 0$	< ±20	mV
V _{OT}	Thermal drift of V _{OF} HAS 50-P	< ±2	mV/K
٥.	HAS 100600-P	< ±1	mV/K
TC e	Thermal drift of the gain (% of reading)	$< \pm 0.1$	%/K
t, `	Response time @ 90% of I _P	< 3	μs
di/dt	di/dt accurately followed	> 50	A/μs
f	Frequency bandwidth (small signal, -1dB) 3) 4)	DC 25	5 kHz

	General data				
T _A T _S m	Ambient operating temperature Ambient storage temperature Mass approx. Standards 5)	- 25 + 85 - 25 + 85 80 EN 50082-2	°C g		

Notes: 1) Pollution class 2, overvoltage category III.

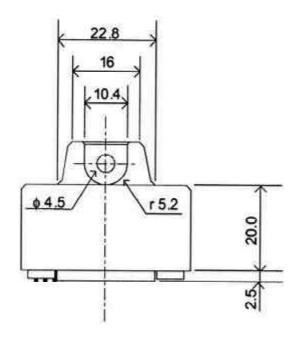
- ²⁾ Linearity data exclude the electrical offset.
- ³⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.
- ⁴⁾ Amorphous core option for high frequency application.
- ⁵⁾ Please consult characterisation report for more technical details and application advice.

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 3000 V~
- Low power consumption
- Extended measuring range (3 x I_{PN})
- Insulated plastic case made of polycarbonate PBT recognized according to UL 94-V0
- Right angle pins for direct PCB mounting

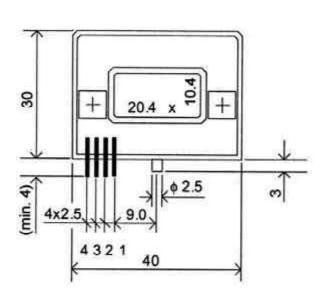
Advantages

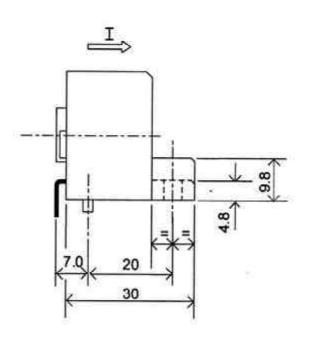
- Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.


Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

040406/0




HAS 50..600-P Dimensions (in mm)

PINS ARRANGEMENT

- 1. +15V
- 2. -15V
- 3. OUTPUT
- 4. 0V

